Impact of Nutrition on Cardiovascular Function.

Current problems in cardiology. 2020;(1):100391
Full text from:

Abstract

The metabolic sources of energy for myocardial contractility include mainly free fatty acids (FFA) for 95%, and in lesser amounts for 5% from glucose and minimal contributions from other substrates such lactate, ketones, and amino acids. However, myocardial efficiency is influenced by metabolic condition, overload, and ischemia. During cardiac stress, cardiomyocytes increase glucose oxidation and reduce FFA oxidation. In patients with ischemic coronary disease and heart failure, the low oxygen availability limits myocardial reliance on FFA and glucose utilization must increase. Although glucose uptake is fundamental to cardiomyocyte function, an excessive intracellular glucose level is detrimental. Insulin plays a fundamental role in maintaining myocardial efficiency and in reducing glycemia and inflammation; this is particularly evident in obese and type-2 diabetic patients. An excess of F availability increase fat deposition within cardiomyocytes and reduces glucose oxidation. In patients with high body mass index, a restricted diet or starvation have positive effects on cardiac metabolism and function while, in patients with low body mass index, restrictive diets, or starvation have a deleterious effect. Thus, weight loss in obese patients has positive impacts on ventricular mass and function, whereas, in underweight heart failure patients, such weight reduction adds to the risk of heart damage, predisposing to cachexia. Nutrition plays an essential role in the evolution of cardiovascular disease and should be taken into account. An energy-restricted diet improves myocardial efficiency but can represent a potential risk of heart damage, particularly in patients affected by cardiovascular disease. Micronutrient integration has a marginal effect on cardiovascular efficiency.

Methodological quality

Publication Type : Review

Metadata